AF3 Forest Fire Model Workshop- Rome, 22 June 2017

Forest Fire Model Validation

Davide Ascoli (Università di Napoli Federico II) Elisa Guelpa (Politecnico di Torino – Dip. Energia) Vittorio Verda (Politecnico di Torino – Dip. Energia)

Objectives of fire field experiments

- 1. Collect fire behaviour data to calibrate and validate fire behavior models
- 2. Test equipments used during fire fighting (e.g., protection dispositives, fire shelter)
- 3. Assess building flammability at the Wildland Urban Interface
- 4. Correlate fire behavior to ecological fire effects (e.g. emissions, tree mortality)
- 5. Others objectives (e.g. fire operators risks, train firefighters...)

Summary

- 1. Why fire evolution modelling
- 2. Experimental data
- 3. Empirical model validation through experimental data
- 4. Physical model validation through experimental data

Possible uses of models in operation

DETERMINISTIC APPROACH

PROBABILISTIC APPROACH

Information available from modeling

Optimize the resources for fire extinction (fire fighters, canadair).
Carry out evacuation plans and reduce fire fighters risk.
Reduce risk and improve effectivness payload delivery.

<section-header>

Models for prediction of:

Physical Models

Tink: 0.5

•QUITE ACCURATE IF INPUT IS ACCURATE

•TOO SLOW AS MANAGEMENT TOOLS

Are there reasonable ways to make wildfire physical models suitable for fast simulations?

An option is <u>model reduction</u>

Physical Models

How much information do we need in order to obtain the main features of a matrix?

COLORED IMAGE =MATRIX obtained as a sum of three matrices

							-	
10	20	(a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	.	a_{1n}
V		a ₂₁	a ₂₂	a ₂₃	a_{24}	a 25		a_{2n}
		a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅		a_{3n}
	A =	a ₄₁	a_{42}	a_{43}	a_{44}	a_{45}		a_{4n}
		a ₅₁	a_{52}	a_{53}	a_{54}	a_{55}		a_{5n}
		an1	a_{n2}	a_{n3}	a_{n4}	a_{n5}		an

Reduced Physical Models

How much information do we need in order to obtain the main features of a matrix?

Reduced Physical Models

computational cost

Reduced Physical Models

Summary

- 1. Why fire evolution modelling
- 2. Experimental data
- 3. Empirical model validation through experimental data
- 4. Physical model validation through experimental data

Fire descriptors

- Flame length (m)
- Rate of spread head, back, flank of the fire front (m/min)
- Fireline intensity (kW/m)
- Fire temperature (°C)
- Radiant energy fluxes (kW/m²)

Flame length

Flame length is the distance from the **average flame tip** to the **middle of the flaming zone** at the base of the fire.

Rate of spread: visual estimate

O Marked points

Rate of spread: thermocouples

Temperature and heat flux

Heat flux-meter

Thermocouple

Data-logger

Source: Frédéric Morandini et Xavier Silvani

Temperature and heat flux

Summary

- 1. Why fire evolution modelling
- 2. Experimental data
- 3. Empirical model validation through experimental data
- 4. Physical model validation through experimental data

Rothermel model

Genetic algorithm

Initial population

GA for fuel model

Results

Results

Summary

- 1. Why fire evolution modelling
- 2. Experimental data
- 3. Empirical model validation through experimental data
- 4. Physical model validation through experimental data

1D physical model

$$\rho c \frac{\partial T}{\partial t} + k_v v \frac{\partial T}{\partial x} = k \frac{\partial^2 T}{\partial x^2} - h(T - T_v) - \frac{H}{s} \frac{dM}{dt} + \Phi_{RAD}$$

$$\Phi_{RAD} = \sum_{j} r F_{ij} \varepsilon \sigma \left(T_{j}^{4} - T^{4} \right)$$

Symbol	Explanation	Evaluation		
Р	Mixture air fuel density	Laboratory Analysis		
С	Specific heat	(Campbell, Norman 2012)		
k,	Advective coefficient	GA using Thermocouple Measurements		
К	Diffusive coefficient	GA using Thermocouple Measurements		
h	Losses coefficient	GA using Thermocouple Measurements		
н	Energy content	Laboratory Analysis		
S	Fuel height	Field Analysis		
A	Mass rate variation coefficient	GA using Thermocouple Measurements		
R	Radiative coefficient	GA using Thermocouple Measurements		

Experimental data

•Wind velocity and direction data are collected every 10 s

•Thermocouples detect temperature evolution during each experiment

• 4 Field experiment are carried out in different wind conditions

•Dead fully cured grasses (diameter< 6 mm). From laboratory and field analysis:

Load 0,43 kg/m2
Height 10 cm
Packing Ratio 0,002
Burned biomass 0,39 kg/m2
Bulk density 5 kg/m3

•Heat power of fuel 18,5 MJ/kg •Humidity 11% of dry fraction

Model calibration through experimental data

 $\operatorname{Err} = \mathbf{W}_{1} * \operatorname{Err}_{_{\text{max}}\text{T}} + \mathbf{W}_{2} * \operatorname{Err}_{_{\text{iff} \text{ egral}}} + \mathbf{W}_{3} * \operatorname{Err}_{_{\text{arrive}}} + \mathbf{W}_{4} * \operatorname{Err}_{_{\text{buning}}}$

Symbol	Explanation	Evaluation		
Р	Mixture air fuel density	Laboratory Analysis		
С	Specific heat	(Campbell, Norman 2012)		
k _v	Advective coefficient	GA using Thermocouple Measurements		
К	Diffusive coefficient	GA using Thermocouple Measurements		
h	Losses coefficient	GA using Thermocouple Measurements		
н	Energy content	Laboratory Analysis		
S Fuel height		Field Analysis		
A	Mass rate variation coefficient	GA using Thermocouple Measurements		
R	Radiative coefficient	GA using Thermocouple Measurements		

Model calibration through experimental data

Experimental

Full Model

AF3 Forest Fire Model Workshop- Rome, 22 June 2017

Thank you for the attention

Davide Ascoli (Università di Napoli Federico II) Elisa Guelpa (Politecnico di Torino – Dip. Energia) Vittorio Verda (Politecnico di Torino – Dip. Energia)

Fire environment

- Fuel structural characteristics: direct-indirect
- Fuel moisture: direct-indirect (eg fire danger index)
- Wind field (direction, speed)
- Air temperature relative humidity
- Orography (slope, aspect, elevation)

Rate of spread: photos

Ascoli - AFR3 Roma, 22 sept. 2016

Exp. 7 – M1.3

Rate of spread: IR techniques

Ascoli - AFR3 Roma, 22 sept. 2016

Martinez-de-Dios et al. 2011

Rate of spread

Rate of spread

Fireline intensity

Ascoli - AFR3 / Roma, 22 sept. 2016